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Abstract
This work concerned with the oscillation of solutions of a class of second order delay dynamic equations with a sub-linear
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1. Introduction

The aim of this paper is to study the oscillation problem of a class of second-order non-linear dynamic
equations with a sub-linear neutral term(

r(t)z∆(t)
)∆

+ q(t)xβ(δ(t)) = 0, t > t0, (1.1)

where 0 < α 6 1,β are ratios of odd positive integers and z(t) := x(t) + p(t)xα(τ(t)). Throughout, the
following assumptions are satisfied.

(H1) r ∈ C1
rd([t0,∞)T, (0,∞)), R(t) =

∫t
t0

1
r(s)∆s, and R̂(t) =

∫∞
t

1
r(s)∆s.

(H2) p,q ∈ Crd([t0,∞)T, [0,∞)) and q(t) is not eventually zero for sufficiently large t.

(H3) τ, δ ∈ Crd([t0,∞)T, T), τ(t) 6 t, δ(t) 6 t and limt→∞ τ(t) = limt→∞ δ(t) =∞.

By a solution of (1.1), we mean a function x ∈ Crd[Tx,∞)T, Tx ∈ [t0,∞)T which has the property
r(t)z∆(t) ∈ C1

rd[Tx,∞)T and satisfies (1.1) on [Tx,∞)T. We consider only those solutions x(t) of (1.1)
which satisfy sup |x(t)| : t ∈ [Tx,∞)T > 0 for all T ∈ [Tx,∞)T. We assume that (1.1) possesses such
solutions. A solution of (1.1) is called oscillatory if it is neither eventually positive nor eventually negative;
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otherwise, it is termed nonoscillatory. Dynamic equations on time scales have an enormous potential for
applications in biology, engineering, economics, physics, neural networks, social sciences, and so forth.

In recent years, there has been a great interest in studying and establishing criteria for the oscillatory
and asymptotic behavior of various classes of dynamic equations on time scales, see; [3, 5, 7, 18, 23, 24, 27].

However, it seems that there are no known results for the oscillation of second-order dynamic equa-
tions with positive sublinear neutral terms. Also, in special cases T = R and T = Z there are a few
literature present sufficient criteria for the oscillatory behavior of second-order differential equations and
difference equations with positive sublinear neutral terms, see; [1, 4, 6, 12–16, 25].

For instance, in the particular case of (1.1) when T = R, Tamilvanan et al. [25] established sufficient
conditions for the oscillation of all solutions of a nonlinear differential equation(

a(t) (x(t) + p(t)xα(τ(t)))′
)′
+ q(t)xβ(σ(t)) = 0, t > t0, (1.2)

where 0 < α 6 1, and β are ratios of odd positive integers, under the assumption that
∫∞
t0

dt
a(t) =∞. The

authors in [13] studied a more general equation than (1.2) in the noncanonical case(
a
(
y′
)γ)′

(t) + q(t)xβ(σ(t)) = 0, t > t0 > 0, (1.3)

where y(t) := x(t) + p(t)xα(τ(t)), under the condition A (t0) :=
∫∞
t0

1
a1/γ(s)

ds < ∞. The authors in [16]
made a contribution to oscillation theory of neutral type delay differential equations(

a(t)
(
x(t) + p(t)xα(σ(t))′

)γ)′
+ q(t)xβ(τ(t)) = 0, t > t0

under the condition A (t0) :=
∫∞
t0

1
a1/γ(s)

ds < ∞. The authors in [1] established sufficient conditions for
the oscillation of a class of second-order differential equations of the form(

r(t) (x(t) + p(t)xα(τ(t)))′
)′
+ q(t)x(σ(t)) = 0, t > t0,

where z(t) := x(t) + p(t)xα(τ(t)), under the assumptions that
∫∞
t0

dt
r(t) =∞ and

∫∞
t0

dt
r(t) <∞.

When T = Z, in [12] Dharuman et al. concerned with the oscillatory behavior of the nonlinear differ-
ence equation with a sub-linear neutral term

∆
(
an∆

(
xn + pnx

α
n−k

))
+ qnx

β
n+1−l = 0,n > n0,

in the two cases
∑∞
n=n0

1
an

=∞ and
∑∞
n=n0

1
an
<∞.

In fact, equation (1.1) has numerous applications in mathematical, theoretical, and chemical physics;
see, e.g., it arises in a variety of real world problems such as in the study of p-Laplace equations non-
Newtonian fluid theory, the turbulentflow of a polytrophic gas in a porous medium, and so forth. So,
there has been much research activity concerning oscillatory behavior of various classes of differential
equations. We refer the reader to [2, 8, 19–21].

Motivated by this observation, our aim in this paper is to present sufficient conditions for the oscilla-
tory behavior of solutions of (1.1), under the conditions either∫∞

t0

1
r(s)

∆s =∞, or
∫∞
t0

1
r(s)

∆s <∞.

The obtained results unify, improve and extend some results in the literature. In what follows, all func-
tional inequalities are assumed to hold eventually. Without loss of generality, we can deal only with
eventually positive solutions of (1.1).
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2. Main results

For simplicity, through this paper for some M > 0 and C > 0 we consider the following

Q(t) = 1 − p(t)

(
R(σ(t))

MR(t)

)1−α

, P(t) := 1 −Cα−1p(t)
R̂α(τ(t))

R̂(σ(t))
, ϕ(t) := q(t)Pβ(δ(t)).

Lemma 2.1 ([26]). Assume that β > 1 and a,b ∈ [0,∞). Then

aβ + bβ >
1

2β−1 (a+ b)
β.

Lemma 2.2 ([26]). Assume that 0 < β 6 1 and a,b ∈ [0,∞). Then

aβ + bβ > (a+ b)β.

Theorem 2.3 ([10]). Assume that ν : T→ R is strictly increasing and T̃ := ν(T) is a time scale. Let y : T̃→ R.
If y∆̃(ν(t)) and ν∆(t) exist for t ∈ Tκ, then

(y ◦ ν)∆(t) = y∆̃(ν(t))ν∆(t).

Where ∆̃ denotes to the derivative on T̃.

First, we consider ∫∞
t0

1
r(s)

∆s =∞. (2.1)

In what follows, we present known results, which will be useful in the proof of our main results.

Lemma 2.4. Let (H1)-(H3) and (2.1) hold. If x(t) is an eventually positive solution of (1.1), then z(t) satisfies

(I) z(t) > 0, z∆(t) > 0, and
(
r(t)z∆(t)

)∆
< 0, t > t1 > t0;

(II) z(t)
R(t) is decreasing for t > t1.

Proof. Since x is an eventually positive solution of (1.1), then by (H2) and (H3) there exists t1 ∈ [t0,∞)T

such that x(t) > 0, x(δ(t)) > 0 and x(τ(t)) > 0 for all t ∈ [t0,∞)T. Now, from (1.1) we have(
r(t)z∆(t)

)∆
6 −q(t)xβ(δ(t)). (2.2)

Hence
(
r(t)z∆(t)

)
is a nonincreasing function and is eventually of one sign. We claim that z∆(t) > 0 for

all t ∈ [t1,∞)T. If not, then there exists t2 ∈ [t1,∞)T such that z∆(t) 6 0 for all t2 ∈ [t1,∞)T. Since q is
not identical to zero for large t, we may assume that z∆(t) < 0 for all t ∈ [t2,∞)T. From (2.2), we have(

r(t)z∆(t)
)
6 −c < 0, for all t ∈ [t2,∞)T,

where c :=
(
r(t2)z

∆(t2)
)
> 0, then

z∆(t) 6
−c

r(t)
. (2.3)

Integrating (2.3) on [t2, t) ⊂ [t2,∞)T, we obtain

z(t) 6 z(t2) − c

∫t
t2

∆s

r(s)
, for all t ∈ [t2,∞)T.

Letting t→∞, then it follows from (2.1) that limt→∞ z(t) = −∞, which is a contradiction. Then

z(t) > 0, z∆(t) > 0, and
(
r(t)z∆(t)

)∆
< 0, t > t1 > t0.
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To prove (II), since (I) holds, then for sufficiently large t1

z(t) >
∫t
t1

r(s)z∆(s)

r(s)
∆s > r(t)R(t)z∆(t).

Moreover, by using the last inequality, we get(
z(t)

R(t)

)∆
=
z∆(t)R(t) − z(t)R∆(t)

R(t)R(σ(t))
=
r(t)z∆(t)R(t) − z(t)

r(t)R(t)R(σ(t))
6 0.

This means that z(t)R(t) is decreasing for t > t1 and completes the proof .

The following theorem present oscillation criteria for (1.1) where β > 1.

Theorem 2.5. Assume that (H1)-(H3) and (2.1) hold, and δ∆ > 0. If β > 1 and there exists a function ψ(t) ∈
C1
rd([t0,∞)T, (0,∞)), such that for sufficiently large t2 > t1, and for any M > 0,

lim sup
t→∞

∫t
t2

(
ψ(s)q(s)Qβ(δ(s)) −

1
4

(ψ∆(s))2r(δ(s))

βM(β−1)ψ(s)δ∆(s)

)
∆s =∞, (2.4)

holds, then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1) on [t0,∞)T such that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) >
0 for t ∈ [t1,∞)T.

From (1.1), condition (2.1), and since (r(t)z∆(t)) is non-increasing, we can obtain that

r(t)z∆(t) 6 r(δ(t))z∆(δ(t)), t > t1.

Also since z∆(t) > 0, so there exists a constant M > 0 such that z(t) > M for all large t > t1. From
definition of z(t), M and since z(t) is increasing, we get

x(t) = z(t) − p(t)xα(τ(t)) > z(t) − p(t)zα(τ(t)) > z(t) − p(t)zα(t) >

(
1 − p(t)

1
zα−1(t)

)
z(t).

Since
z(t)

R(t)
is decreasing, we get

x(t) >

(
1 − p(t)

(
R(σ(t))

MR(t)

)1−α
)
z(t) > Q(t)z(t).

This with (1.1), leads to
[r(t)z∆(t)]∆ 6 −q(t)Qβ(δ(t))zβ(δ(t)). (2.5)

Define the Riccati substitution

ω(t) = ψ(t)
r(t)z∆(t)

zβ(δ(t))
.

It is clear that ω(t) > 0 for t > t1 and

ω∆(t) =ψ∆(t)
r(σ(t))z∆(σ(t))

zβ(δ(σ(t)))
+ψ(t)

(
r(t)z∆(t)

zβ(δ(t))

)∆
=ψ∆(t)

r(σ(t))z∆(σ(t))

zβ(δ(σ(t)))
+ψ(t)

[
[r(t)z∆(t)]∆zβ(δ(t)) − r(t)z∆(t)

(
zβ(δ(t))

)∆
zβ(δ(t))zβ(δ(σ(t)))

]
.

(2.6)
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Applying the Pötzsche chain rule and Theorem 2.3, we get

(
zβ(δ(t))

)∆
= β

{∫ 1

0

[
z(δ(t)) + hµ[z(δ(t))]∆

]β−1
dh

}
z∆(δ(t))δ∆(t)

= β

{∫ 1

0
[(1 − h)z(δ(t)) + hµz (δσ(t))]β−1 dh

}
z∆(δ(t))δ∆(t)

> βzβ−1 (δσ(t)) z∆(δ(t))δ∆(t).

This with (2.6) and and taking into account that z∆(t) > 0, and δ∆(t) > 0, leads to

ω∆(t) 6 ψ∆(t)
r(σ(t))z∆(σ(t))

zβ(δ(σ(t)))
+ψ(t)

[r(t)z∆(t)]∆

zβ(δ(σ(t)))
−βψ(t)δ∆(t)

r(t)z∆(t)z∆(δ(t))

zβ+1(δ(σ(t)))
.

Also, since (r(t)z∆(t)) is non-increasing and from definition of ω(t), we get

ω∆(t) 6ψ∆(t)
r(σ(t))z∆(σ(t))

zβ(δ(σ(t)))
+ψ(t)

[r(t)z∆(t)]∆

zβ(δ(t))
−βψ(t)δ∆(t)

r(σ(t))z∆(σ(t))z∆(δ(t))

zβ+1(δ(σ(t)))

6ψ(t)
[r(t)z∆(t)]∆

zβ(δ(t))
+
ψ∆(t)

ψ(σ(t))
ω(σ(t)) −βδ∆(t)

ψ(t)

ψ(σ(t))

z∆(δ(t))

z(δ(σ(t)))
ω(σ(t)).

(2.7)

From (1.1) and (2.5) with (2.7), we obtain

ω∆(t) 6 −ψ(t)q(t)Qβ(δ(t)) +
ψ∆(t)

ψ(σ(t))
ω(σ(t)) −βδ∆(t)

ψ(t)

ψ(σ(t))

z∆(δ(t))

z(δ(σ(t)))
ω(σ(t)). (2.8)

Since (r(t)z∆(t)) is non-increasing, we obtain

z∆(δ(t)) >
r(σ(t))z∆(σ(t))

r(δ(t))
.

This with (2.8), leads to

ω∆(t) 6−ψ(t)q(t)Qβ(δ(t)) +
ψ∆(t)

ψ(σ(t))
ω(σ(t)) −βδ∆(t)

zβ−1(δ(σ(t)))ψ(t)

r(δ(t))ψ2(σ(t))
ω2(σ(t))

6−ψ(t)q(t)Qβ(δ(t)) +
ψ∆(t)

ψ(σ(t))
ω(σ(t)) −βMβ−1δ∆(t)

ψ(t)

r(δ(t))ψ2(σ(t))
ω2(σ(t)).

Applying the inequality

Bω−Aω
α+1
α 6

αα

(α+ 1)α+1
Bα+1

Aα
,

with B =
ψ∆(t)

ψ(σ(t))
,A = βMβ−1δ∆(t)

ψ(t)

r(δ(t))ψ2(σ(t))
, we get that

ω∆(t) 6 −ψ(t)q(t)Qβ(δ(t)) +
1
4

(ψ∆(t))2r(δ(t))

βM(β−1)ψ(t)δ∆(t)
. (2.9)

By integrating (2.9) from t2(t2 ∈ [t1,∞)T) to t, we have∫t
t2

(
ψ(s)q(s)Qβ(δ(s)) −

1
4

(ψ∆(s))2r(δ(s))

βM(β−1)ψ(s)δ∆(s)

)
∆s 6 ω(t2),

which contradicts (2.4). This completes the proof.



A. A. Soliman, A. M. Hassan, S. E. Affan, J. Math. Computer Sci., 24 (2022), 97–109 102

The following theorems present oscillation criteria for (1.1) where 0 < β < 1.

Theorem 2.6. Assume that (H1)-(H3) and (2.1) hold, and δ∆ > 0. For 0 < β < 1 if the first order delay dynamic
equation

ω∆(t) +Kβ−1q(t)Qβ(δ(t))Rβ(δ(t))ω(δ(t)) = 0, (2.10)

is oscillatory for any M > 0, then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1) on [t0,∞)T such that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) >
0 for t ∈ [t1,∞)T. From (1.1), condition (2.1) and since (r(t)z∆(t)) is non-increasing, we get

z(δ(t)) = z(t1) +

∫δ(t)
t1

r(s)z∆(s)

r(s)
∆s > r(δ(t))z∆(δ(t))R(δ(t)). (2.11)

Proceeding as in the proof of Theorem 2.5, we get

[r(t)z∆(t)]∆ 6 −q(t)Qβ(δ(t))zβ(δ(t)). (2.12)

Since z(t)
R(t) is decreasing, there exists a constant K > 0 such that

z(t)

R(t)
6 K, t > t2 > t1. (2.13)

Using (2.13) and 0 < β < 1, then (2.12) takes the form(
r(t)z∆(t)

)∆
+Kβ−1q(t)Qβ(δ(t))Rβ−1(δ(t))z(δ(t)) 6 0, t > t2 > t1.

Using this with (2.11), we obtain

(r(t)z∆(t))∆ +Kβ−1q(t)Qβ(δ(t))Rβ(δ(t))r(δ(t))z∆(δ(t)) 6 0, t > t1. (2.14)

Define ω(t) = r(t)z∆(t) > 0. Then from (2.14), we have

ω∆(t) +Kβ−1q(t)Qβ(δ(t))Rβ(δ(t))ω(δ(t)) 6 0, t > t1, (2.15)

where ω(t), is a positive solution of the first order delay dynamic inequality (2.15). By [17, Theorem 3.1],
equation (2.10) also presents a nonoscillatory solution. This contradiction proves that (1.1) is oscillatory.

Theorem 2.7. Assume that (H1)-(H3) and (2.1) hold, and δ∆ > 0. If 0 < β < 1 and there exists a function
ψ(t) ∈ C1

rd([t0,∞)T, (0,∞)), such that for sufficiently large t2 > t1, and for any M > 0,

lim sup
t→∞

∫t
t2

(
ψ(t)q(t)

[
(1 −αp(δ(t)))β −

(1 −α)βpβ(δ(t))

Mβ

]
−

1
4

(ψ∆(s))2r(δ(s))

βM(β−1)ψ(s)δ∆(s)

)
∆s =∞, (2.16)

holds, then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1) on [t0,∞)T such that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) >
0 for t ∈ [t1,∞)T. From (1.1), condition (2.1), and since z∆(t) > 0, so there exists a constant M > 0 such
that z(t) >M for all large t > t1. From definition of z(t), and by using Lemma 2.1, we get

x(t) = z(t) − p(t)xα(τ(t)) >z(t) − p(t)zα(τ(t))

>z(t) − p(t)zα(t)

>z(t) − p(t) (zα(t) − 1) − p(t)
>z(t) −αp(t) (z(t) − 1) − p(t) > (1 −αp(t))z(t) − (1 −α)p(t).
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This leads to
(x(δ(t)) + (1 −α)p(δ(t)))β > (1 −αp(δ(t)))βzβ(δ(t)).

Using Lemma 2.2, we get

xβ(δ(t)) > (1 −αp(δ(t)))βzβ(δ(t)) − (1 −α)βpβ(δ(t)). (2.17)

From (1.1) and (2.17), we get(
r(t)z∆(t)

)∆
6 −q(t)(1 −αp(δ(t)))βzβ(δ(t)) + q(t)(1 −α)βpβ(δ(t)). (2.18)

Define the Riccati substitution

ω(t) = ψ(t)
r(t)z∆(t)

zβ(δ(t))
> 0.

Similarly as in the proof of Theorem 2.5, we obtain

ω∆(t) 6 ψ(t)
[r(t)z∆(t)]∆

zβ(δ(σ(t)))
+

1
4

(ψ∆(t))2r(δ(t))

βM(β−1)ψ(t)δ∆(t)
.

This with (2.18), leads to

ω∆(t) 6 −ψ(t)q(t)

(
(1 −αp(δ(t)))β −

(1 −α)βpβ(δ(t))

Mβ

)
+

1
4

(ψ∆(t))2r(δ(t))

βM(β−1)ψ(t)δ∆(t)
. (2.19)

By integrating (2.19) from t2(t2 ∈ [t1,∞)T) to t, we have∫t
t2

(
ψ(t)q(t)

[
(1 −αp(δ(t)))β −

(1 −α)βpβ(δ(t))

Mβ

]
−

1
4

(ψ∆(s))2r(δ(s))

βM(β−1)ψ(s)δ∆(s)

)
∆s 6 ω(t2),

which contradicts (2.16). This completes the proof.

Now, we consider ∫∞
t0

1
r(s)

∆s <∞. (2.20)

First, we establish an oscillation criterion when β > 1.

Theorem 2.8. Let β > 1. Assume that (H1)-(H3) and (2.20) hold, and limt→∞ p(t) = 0. If

lim sup
t→∞

∫t
t2

(
ϕ(s)R̂(σ(s)) −

1
4βCβ−1r(s)R̂β(σ(s))

)
∆s =∞, (2.21)

holds for any C > 0 and sufficiently large t2 > t1, then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1) on [t0,∞)T such that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) >
0 for t ∈ [t1,∞)T. From (1.1) and condition (2.20), we get

(r(t)z∆(t))∆ 6 0, (2.22)

which means that (r(t)z∆(t)) is non-increasing and implies two cases: case (I) z∆(t) > 0, or case (II)
z∆(t) < 0. Therefor limt→∞ z(t) = limt→∞ x(t) + p(t)xα(τ(t)) = limt→∞ x(t), since limt→∞ p(t) = 0.

Now, we consider case (I). Since z∆(t) > 0, then there exists a constant d > 0, such that

x(t) > x(τ(t)) > d, for t > t1, (2.23)

from (1.1), (2.23), we get
(r(t)z∆(t))∆ + q(t)dβ < 0, t > t1. (2.24)
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Integrating (2.24) from t1 to t, we get

r(t)z∆(t) − r(t1)z
∆(t1) + d

β

∫t
t1

q(s)∆s < 0. (2.25)

But
∫∞
t1
q(s)∆s =∞ which with (2.25) leads to

lim
t→∞ r(t)z∆(t) = −∞,

which is a contradiction with the eventual positivity of (r(t)z∆(t)).
Next, we consider case (II). Define

ω(t) =
r(t)z∆(t)

zβ(t)
.

Then ω(t) < 0 for t > t1. From (2.22), we get

z∆(u) 6
r(t)

r(u)
z∆(t), u > t ∈ [t1,∞)T.

By integrating from t to j, we get

z(j) − z(t) 6 r(t)z∆(t)
∫ j
t

1
r(u)

∆u,

and by letting j→∞, leads to

−1 6
r(t)z∆(t)

z(t)
R̂(t), (2.26)

with definition of ω(t), we get

ω(t)R̂(t) > −L1−β, where L = z(t1) > 0. (2.27)

On the other hand, we can use (2.26) to obtain

(
z(t)

R̂(t)

)∆
=
z∆(t)R̂(t) − z(t)R̂∆(t)

R̂(t)R̂(σ(t))
>
z∆(t)R̂(t) +

z(t)

r(t)

R̂(t)R̂(σ(t))
> 0,

so,
z(σ(t))

R̂(σ(t))
>
z(τ(t))

R̂(τ(t))
. (2.28)

Since z(t) := x(t) + p(t)xα(τ(t)), we get

x(t) = z(t) − p(t)xα(τ(t)) > z(t) − p(t)zα(τ(t)).

This with (2.28) and taking into account z∆(t) < 0, leads to

x(t) > z(t) − p(t)
R̂α(τ(t))

R̂α(σ(t))
zα(σ(t)) >

(
1 − p(t)

R̂α(τ(t))

R̂α(σ(t))
zα−1(σ(t))

)
z(t). (2.29)

Since
(
z(t)

R̂(t)

)
is positive and increasing, we get

z(σ(t))

R̂(σ(t))
>
z(t)

R̂(t)
>
z(t1)

R̂(t1)
= C > 0, t > t1, (2.30)
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z(σ(t)) > CR̂(σ(t)), t > t1. (2.31)

From (2.29) and (2.31), we get

x(t) >

(
1 −Cα−1p(t)

R̂α(τ(t))

R̂(σ(t))

)
z(t) = P(t)z(t). (2.32)

From (1.1) and (2.32), we get

(r(t)z∆(t))∆ =− q(t)xβ(δ(t))

6− q(t)Pβ(δ(t))zβ(δ(t))

6− q(t)Pβ(δ(t))zβ(t)

6− q(t)Pβ(δ(t))zβ(σ(t)) := −ϕ(t)zβ(σ(t)).

(2.33)

Now, from definition of ω(t), we get

ω∆(t) =
(r(t)z∆(t))∆zβ(t) − r(t)z∆(t)(zβ(t))∆

zβ(t)zβ(σ(t))
6

(r(t)z∆(t))∆

zβ(σ(t))
−β

r(t)(z∆(t))2

z(t)zβ(σ(t))
. (2.34)

Also, since z∆(t) < 0 this with (2.30) and (2.34), we obtain

ω∆(t) 6
(r(t)z∆(t))∆

zβ(σ(t))
−β

r(t)(z∆(t))2

zβ+1(t)
6

(r(t)z∆(t))∆

zβ(σ(t))
−βCβ−1 R̂

β−1(t)

r(t)
ω2(t).

By using the last inequality with (2.33), we conclude that

ω∆(t) 6 −ϕ(t) −βCβ−1 R̂
β−1(σ(t))

r(t)
ω2(t). (2.35)

By using (2.35), we obtain the following

(R̂(t)ω(t))∆ = R̂∆(t)ω(t) + R̂(σ(t))ω∆(t) 6 R̂∆(t)ω(t) −ϕ(t)R̂(σ(t)) −βCβ−1 R̂
β(σ(t))

r(t)
ω2(t).

Applying the inequality

Bω−Aω
α+1
α 6

αα

(α+ 1)α+1
Bα+1

Aα
,

with B = R̂∆(t), A = βCβ−1 R̂
β(σ(t))

r(t)
, where α = 1, we get that

(R̂(t)ω(t))∆ 6 −ϕ(t)R̂(σ(t)) +
r(t)(R̂∆(t))2

4βCβ−1R̂β(σ(t))
6 −ϕ(t)R̂(σ(t)) +

1
4βCβ−1r(t)R̂β(σ(t))

. (2.36)

By integrating (2.36) from t2 ∈ [t1,∞)T to t, in view of (2.27) we have∫t
t2

(
ϕ(s)R̂(σ(s)) −

1
4βCβ−1r(s)R̂β(σ(s))

)
∆s 6 L1−β + R̂(t2)ω(t2) <∞,

which contradicts (2.21). This completes the proof.

Letting β = 1, Theorem 2.8 yields the following result.
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Corollary 2.9. Let β = 1. Assume that (H1)-(H3) and (2.20) hold, and limt→∞ p(t) = 0. If

lim sup
t→∞

∫t
t2

(
q(s)P(δ(s))R̂(σ(s)) −

1
4r(s)R̂(σ(s))

)
∆s =∞, (2.37)

holds for sufficiently large t2 > t0, then (1.1) is oscillatory.

Now, we establish an oscillation criterion when 0 < β < 1.

Theorem 2.10. Let 0 < α < 1 and 0 < β < 1. Assume that (H1)-(H3) and (2.20) hold, and limt→∞ p(t) = 0. If

lim sup
t→∞

∫t
t2

(
Lq(s)Pβ(s)R̂(σ(s)) −

1
4r(s)R̂(σ(s))

)
∆s =∞, (2.38)

holds for some L := Kβ−1 > 0 and sufficiently large t2 > t0, then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1) on [t0,∞)T such that x(t) > 0, x(τ(t)) > 0, and x(δ(t)) >
0 for t ∈ [t1,∞)T. From (1.1) and condition (2.20), we have two cases: case (I) z∆(t) > 0, or case (II)
z∆(t) < 0.

Case (I) is similar as in the proof of Theorem 2.8.
Now, we consider case (II). Since z(t) < 0, and limt→∞ z(t) = limt→∞ x(t), then we have two possibil-

ities: either limt→∞ z(t) = d1 > 0 or limt→∞ z(t) = 0. First case implies that limt→∞ x(t) = d1, so there
exists a constant d2 > 0 such that x(t) > d2, which leads to a contradiction as in case (I). Now, for the
second case we define

ω(t) =
r(t)z∆(t)

z(t)
< 0.

This case implies that
0 < z(t) < N, where N := L1/(β−1), for t > t1. (2.39)

Now, proceeding as in the proof of Theorem 2.8, from (2.33) and (2.39), we obtain that

(r(t)z∆(t))∆ 6 −q(t)Pβ(t)zβ(t) 6− q(t)Pβ(t)zβ−1(t)z(σ(t))

6− q(t)Pβ(t)Nβ−1z(σ(t)) = −Lq(t)Pβ(t)z(σ(t)).

Now, as similar as in Theorem 2.8, we get

(R̂(t)ω(t))∆ 6 −Lq(t)Pβ(t)R̂(σ(t)) +
1

4r(t)R̂(σ(t))
. (2.40)

By integrating (2.40) from t2(t2 ∈ [t1,∞)T) to t, in view of (2.26) we have∫t
t2

(
Lq(s)Pβ(s)R̂(σ(s)) −

1
4r(s)R̂(σ(s))

)
∆s 6 1 + R̂(t2)ω(t2) <∞,

which contradicts (2.38). This completes the proof.

3. Examples

Example 3.1 ([25]). Assume T = R. Consider the second order neutral differential equation(
t

(
x(t) +

1
t
x1/3(t/2)

)′)′
+ tx3(t/2) = 0, t > 1, (3.1)
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where α = 1/3,β = 3, r(t) = t, p(t) = 1
t , q(t) = t, τ(t) = t

2 , and δ(t) = t
2 . It is clear that

∫∞
t0

1
r(s)ds =∫∞

1
1
sds =∞, then for M = 1 and ψ(t) = t we can apply condition (2.4) that becomes

lim sup
t→∞

[∫t
1

(
s2
(

1 −
2
s

)3

−
log(s/2)

6s

)
ds

]
=∞.

So it is clear that (3.1) satisfies all conditions of Theorem 2.5, then equation (3.1) is oscillatory.

Example 3.2. Assume T = R. Consider the second order neutral differential equation(
x(t) +

1
t
x1/3(t/2)

) ′′
+

a

t4/3x
1/3(t/2) = 0, t > 0, (3.2)

where α = β = 1/3, r(t) = 1, p(t) = 1
t , q(t) =

a

t4/3 , and τ(t) = δ(t) = t
2 . It is clearly that

∫∞
t0

1
r(s)ds =∫∞

0 ds =∞, then for M = 1 and ψ(t) = t we can apply condition (2.16) that becomes

lim sup
t→∞

∫t
t2

(
a

t1/3

[(
1 −

2
3t

)1/3

−

(
4
3t

)1/3
]
−

3
2t

)
ds =∞,

for a > 0, it is clear that equation (3.2) satisfies all conditions of Theorem 2.7, then equation (3.2) is
oscillatory for a > 0.

Example 3.3 ([12]). Assume T = Z. Consider the second order neutral difference equation

∆

(
(n+ 1)∆

(
xn +

1
n
x

1/3
n−2

))
+

(
4n+ 10 +

2n+ 1
n(n+ 1)

)
x3
n−3 = 0, n > 1, (3.3)

where α = 1/3,β = 3, rn = n+ 1, pn = 1
n , qn = 4n+ 10+ 2n+1

n(n+1) , τn = n− 2, and δn = n− 3. It is clearly
that

∑∞
t0

1
r(s) =

∑∞
1

1
s+1 =∞, then for M = 1 and ψn = 1 we can apply condition (2.4) that becomes

lim sup
n→∞

 n∑
s=1

(4s+ 10 +
2s+ 1
s(s+ 1)

)(
1 −

1
s

(
Rs+1

Rs

)1/3
)3
 =∞.

So it is clear that (3.3) satisfies all conditions of Theorem 2.5, then equation (3.3) is oscillatory.

Example 3.4 ([25]). Assume T = R. Consider the second order neutral differential equation(
t2
(
x(t) +

p0

t2−2αx
α

(
t

2

))′)′
+ λx(t) = 0, t > 1, (3.4)

where p0 > 0, λ > 0, and 0 < α < 1. Here, we have β = 1, r(t) = t2, p(t) =
p0

t2−2α , q(t) = λ, τ(t) = t
2 ,

and δ(t) = t. It is clearly that
∫∞
t0

1
r(s)ds =

∫∞
1

1
s2ds <∞, then for C = 1 we can apply condition (2.37) that

becomes

lim sup
t→∞

[∫t
1

(
λ

s

(
1 −

p0

t2−2α

( 2
s

)α( 1
s

) )−
1
4s

)
ds

]
= (4λ− 1)∞.

So it is clear that (3.4) satisfies all conditions of Corollary 2.9 for λ > 1
4 , then for λ > 1

4 equation (3.4) is
oscillatory.
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Example 3.5 ([4]). Assume T = Z. Consider the second order neutral difference equation

∆

(
n(n+ 1)∆m−1

(
xn +

1
n
x

1/3
n−2

))
+nx

1/3
n−1 = 0, n > 2, (3.5)

where m = 2, α = β = 1/3, rn = n(n+ 1), pn = 1
n , qn = n, τn = n− 2, and δn = n− 1. It is clear that∑∞

t0
1
r(s) =

∑∞
2

1
s(s+1) <∞, then for L = 1 we can apply condition (2.38) that becomes

lim sup
n→∞

 n∑
s=2

s
1 −

1
s

( 1
s−2

)1/3( 1
s+1

)
1/3

−
1
4s


 =∞.

So it is clear that (3.5) satisfies all conditions of Theorem 2.10, then equation (3.5) is oscillatory.

Remark 3.1. It would be interesting to establish sufficient conditions for the oscillatory behavior of solu-
tions to (1.1) when z(t) = x(t) − p(t)xα(τ(t)). Many studies have been devoted to the oscillatory behavior
of solutions to different classes of equations with negative neutral coefficients, see [9, 11, 22].
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